

- Centre for environmentally-friendly energy (FME)
- 8 years (5 + 3 years), starting 2022 (~ September)
- Host institution: SINTEF Energy
- Research partners: SINTEF, NTNU, UiO, IFE, USN, UiT
- Industrial partners: More than 50; large, multi-nationl and small (SMEs)
- Budget: ~540 MNOK (~55 M€), 200 MNOK in public support from RCN
- 35 PhD/postdoctoral fellowships

Oppretter to nye forskningssentre på hydrogen

SINTEF og NORCE får hvert sitt forskningssenter, og mottar til sammen 310 millioner kroner for å styrke Norges forskningsinnsats på hydrogen de neste ått årene.

Pressemelding Publisert 11. mar 2022

mar 2022 Del ≪ Last ned o

Regjeringen har ambisjoner om at Norge skal ta på seg ledertrøyen i teknologiutviklingen på hydrogen og hydrogenbaserte energibærere. Forskningsrådet tildeler 310 millioner kroner til to nye sentre ved SINTEF og NOR!

The Contract of the Contract o

Hydrogen

a Baker Hughes business

Troms Kraft

SICK

Sensor Intelligence.

SIEMENS

SINTEF

SAFET

Air Liquide

AKER CARBON

AKER CLEAN

HYDROGEN

altera

Bergen

AkerSolutions

BOSCH

DNV

ENERGI

I NORD

)))) Hydro

HYDROGEN Mem-Tech AS

Clean hydrogen and carbon capture

///Vhydrogen

Green

Industry

Cluster

equinor

Hydrogen for net zero by 2050

RA1 – Cost efficient and scalable production

- WP 1.1 Green H2 production
 - Materials and manufacturing for optimum performance and durability
 - Efficiency and dynamic behaviour of electrolysers
 - Design, operation and process integration of large-scale electrolysers
- WP 1.2 Blue H2 production
 - Reforming concepts
 - Smelter off-gas handling
 - Advanced H2/CO2 separation technologies
- WP 1.3 NH3 production and cracking
 - Integrated production
 - NH3-cracking catalysts
 - Membrane-enhanced NH3 cracking

RA2 – Transport and storage

- WP 2.1 Liquid H2 technologies
 - H2 liquefaction
 - Magneto-caloric materials
 - Quantification of efficiency and scalability of H2 liquefiers
 - Assessment of measurement principles
- WP 2.2 Storage
 - Metal hydrides
 - Geological formations
 - Gas hydrates
- WP 2.3 Maritime and pipeline transportation
 - Maritime distribution network
 - H2/NH3 fleet and its operational patterns
 - Novel ship designs
 - Upgraded fit-to-purpose port infrastructure
 - Pipeline transportation

- WP 3.1 Industrial use
 - Industrial heat
 - H2 as reducing agent
- WP 3.2 Maritime H2/NH3 technologies
 - Fuel-cell stacks and systems
 - Internal combustion engines
 - System integration and hybridization

RA3 lead Øystein Ulleberg, IFE

RA4 – Safety and material integrity

- WP 4.1 Material integrity
 - H uptake and diffusion
 - Critical degradation mechanisms
 - Lifetime assessment
 - Polymer ageing
- WP 4.2 Safety and risk assessment
 - Risk-management framework
 - Frequency analysis
 - Physical phenomena

Integrated capacity building programme (35 PhD and postdoctoral fellowships)

Responsible: Prof. Hilde J. Venvik

(+research advisor Thais Mothe-Diniz)

Institutions involved: NTNU, UiO, USN, UiT

Key elements:

- ✓ Integration/interaction with the relevant WPs and industrial partners
- ✓ Internationalization and scientific excellence; scientific committee and international advisors, HySchool
- Team efforts and exchange of experience, competencies, results and best practices

Accelerate a hydrogen-based energy and technology export industry for Norway, reducing emissions while boosting industry competence and creating new green jobs.

- Enable cost-effective and large-scale H₂ and NH₃ production technologies
- Enable H_2 storage and transport for emerging large-scale and high-energy demand applications
- Enable end use of clean H_2 and NH_3 in hard-to-abate sectors, including industry and maritime transport
- Develop new knowledge on critical aspects of safety, material integrity & standards
- Stimulate innovation, industrial establishment and uptake of new technology and solutions through industry-driven user cases
- Build capacity for the hydrogen economy

- Funding model & structure

General funding contribution model

- Research council:
 - maximum 50%
 - allows up to 25 MNOK per year
- Industry (user) partners: minimum 25%

Funding of FME HYDROGENi

- 25 MNOK per year from the Research Council of Norway
 - ca. 37% of total funding
- Cash and in-kind funding from industry and R&D partners ca. 63%

Adm. co-ordinator NN, SINTEF

Centre Director Nils Røkke, **SINTEF**

Integrated capacity building programme Hilde J Venvik, NTNU

Scientific Committee co-lead Bjørn Hauback, IFE

Scientific Committee co-lead Anja Sjåstad, UiO

RA1 lead **Marie-Laure** Fontaine, SINTEF

RA2 lead Petter Nekså, **SINTEF**

RA3 lead Øystein Ulleberg, **IFE**

RA4 lead Nicola Paltrinieri, NTNU

Co-Director Kyrre Sundseth, SINTEF

Co-Director Stefania Gardarsdottir, **SINTEF**

Co-Director Trond Johnsen, **SINTEF**

International **Liaison Manager** Steffen-Møller-Holst. **SINTEF**

